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Abstract—Equations are derived which describe the free damped vibrations of plates and shells
made of laminated fiber-reinforced, organic-matrix composites. A finite element method is
developed for obtaining solutions to these equations. A computer code is written, which can be
used to calculate the natural frequencies, mode shapes, and damping factors of rectangular plates,
cvlinders. and cylindrical panels with free, clamped. or simply supported edges. and with or without
circular cutouts. Natural frequencics and mode shapes calculated by the code for isotropic and
composite plates, cylinders, and cylindrical panels are compared with previous analytical, numerical,
and experimental results. The results of the present study agree closely with those reported by
previous investigators.

. INTRODUCTION

In recent years, many analyses have been proposed for calculating the vibrational charac-
teristics of plates and shells made of fiber-reinforced composites. Most of the previous
analyses were concerned with the problem of free undamped vibration, and most were
formulated using the KircholT- Love assumption thereby neglecting transverse shear defor-
mation. Damping has been included by Alam and Asnani (1986), Lin ¢r al. (1984), and Ni
and Adams (1984) in their analyses of free vibrations of composite plates and beams, and
by Alam and Asnani (1984a, b, 1987) in their analysis of free vibrations of circular cylinders
made cither of alternating layers of difterent isotropic materials or a specially orthotropic
material. The effects of transverse shear strains have generally been considered only with
reference to free vibrations of composite plates (Alam and Asnani, 1986, 1987 ; Lin et al.,
1984 : Reddy, 1984 ; Phan and Reddy, 1985 Noor, 1972 Srinivas and Rao, 1970), with the
apparent exeeption of Alam and Asnani's aforementioned study of a specially orthotropic
cylinder.

Thus, the free vibration analyses of composite plates scem to be well in hand. However,
corresponding analyses for shells, taking into account the effects of both damping and
transverse shear strains, are not yet available. Therefore, the first objective of this inves-
tigation was to develop the equations describing the problem of free damped vibrations of
composite shells, without introducing the Kirchoff-Love assumption. These results are
presented in this paper. The second objective was to study the free damped vibrations of
composite plates and shells containing circular cutouts. These results will be described in a
forthcoming paper (Bicos and Springer, 1989).

2. PROBLEM STATEMENT

We consider a shell with principal radii of curvature R, and R, and thickness 4 (Fig.
1). The thickness 4 is small in comparison with the other dimensions of the shell. There are
no forces or constraints applicd on the upper or lower surfaces of the shell. Each outer edge
of the shell may be clamped, simply supported, or free.

The shell is made of a laminated composite consisting of layers of unidirectional,
continuous fibers embedded in an organic matrix. The layers are perfectly bonded. The
shell may be made entirely of composite or of two composite face sheets enclosing a core,
but the cross section must be symmetric with respect to the midsurface of the shell.
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Fig. 1. Description of the shell,

The objective is to develop the equations which deseribe the free damped vibration of
the shells and can be used to caleulate the natural frequencies, mode shapes. and damping
factors.

3OGOVERNING FQUATIONS

In this section, the equations applicable to a general shell (Fig, 1) are presented in
which : (a) the thickness £ of the shell s small compared to all the other dimensions of the
shell; (b) the thickness & s constant; (¢) the material from which the shell s constructed
is layered symmetrically with respect to the midsurface of the shell; and (d) each layer of
the shellis either isotropic or orthotropic. The cquations wre developed on the basis of the
following ussumptions:

(1) the material from which the shell is constructed behaves in a lincarly elustic manner

{2) the material exhibits light damping, .o, any vibration of the material dies out in an
amount of time that is large in comparison to the period of vibration;

(3) damping of the material is independent of the frequency of the vibration (this
assumption, although generally invalid for an isotropic metal. is often justified for fiber-
reinforced organic matrix composites) ;

(4) the shell vibrations are simple harmonic motions ;

{5} the effects of gravity on the vibration of the shell are negligible.

[t is further assumed that the transverse normal stress .. at any point is much smaller
than any of the other stresses at that point and is, therefore, negligible. The component of
the displacement normal to the shell midsurface (out-of-plane™ component with magnitude
1,) is assumed to be constant through the thickness. The displacement components per-
pendicular to the normal component of displacement (in-plane”™ components) are assumed
to vary through the thickness such that transverse shear strains are nonzero. The latter
assumption implics that the Kirchhofl -Love assumption (Naghdi, 1963), that normals to
the midsurface before deformation remain normal and straight after deformation, is not
assumed in the present analysis.

After the governing equations have been derived we utilize a finite element method to
generate numerical values of the natural frequencics. mode shapes, and damping factors.
Because the resulting finite element formulation of the problem is very large, and because
we are interested only in the first few eigenvalues and cigenvectors, the problem is attacked
in two steps. In the first step. the undamped natural frequencies and the corresponding
undamped mode shapes of the shell are obtained. For lightly damped structures, such as



Anulysis of free damped vibration of laminated composite plates and shells 131

4

surface
parallel to
midsurface

midsurface

x2

x! = constant

Fig. 2. Definition of the coordinate system and midsurface base vectors. For an orthogonal
lines-of-curvature coordinate system. Q = 90", and the coordinate lines (x' = constant and
= constant) are identical to the lines of curvature.

those considered in this study, the undamped natural frequencics and mode shapes are
acarly the same as the damped natural frequencies and mode shapes. In the sccond step,
the damping corresponding to cach mode of vibration, as expressed in terms of a modal
damping factor, is calculated.

3.1, Geometrical considerations

In developing the governing equations we employed a generad coordinate system shown
in Fig. 2. The various components ol vectors and tensors in this coordinate system can be
found in texts, such as Naghdi (1963), and are not given here in detail. Only those aspects
of the coordinate system are described which are needed in the subsequent analysis. A
coordinate (x', x7, z) attached to the shell midsurtace is used. The base vectors {a,, a., a4},
associated with the coordinate system shown in Fig. 2, satisfy the following conditions
{Naghdi, 1963, 1984)

a, =1, (M
apray =1, aca; =0, a~a"=0 a;,ca,=0 ()

where 0 is the Kronecker delta. The metric coefficients of the shell midsurface are
given by

Uap = Ay " Ay (3)

Here, and in what follows, bold face type indicates a vector, a comma denotes partial
differentiation, and subscripts « and f take on the values of 1 and 2. The vector ris the
position vector of any point on the shell midsurface.

The position vector R of an arbitrary point B inside the shell is related to the position
vector r of a corresponding point A on the shell midsurface by (Fig. 3)

R=r+-xa,. 4)

Any first, second, third, or fourth rank tensor evaluated at point B inside the shell can
be expressed in terms of the components with respect to the base vectors {a,.a,, a,} at point
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Fig. J. Definition of the displacement vector components with respect to the shell midsurfuce.

A on the midsurface. The following expressions relate the components of a tensor with
respect to the midsurface base vectors (Naghdi, 1984)

first rank (T}, = 43[T"]a, (5)
sccond rank  [7Y]a, ® ay = T e, ® a, (6)
third runk [T, ® ay @, = b [T, ® yu®a, (7)

fourth rank  [77"]a, ® a, ® 0, @ a,
= w1 [T, ® a4, ® 0. ® a, (%)
where @ is the tensor product symbol and
= o — bt "

AL are the coefficients of the curvature tensor. The terms in brackets on the right-hand side
of cyns {3)-{8) arc referred to as the coctlicients of the tensor at point B and the terms in
bruckets on the left-hand side of these equations wre referred to as the coeflicients of the
tensor with respeet to the midsurtace base vectors at point A,

For the orthogonal lines-of-curvature coordinate system, the curvature coeflicients are
{Naghdi. 1963)

>
it

i
=
e
]

i
=
had T
]
>
e
il
o=l

(10)

Regarding the notation used in eqns (1)-(9), the following comments are made. In
these equations. as well as in all subsequent analysis, subscripts denote covariant tensor
coefficients and superscripts denote contravariant tensor cocflicients (Flugge. 1972).
Furthermore. all Greek indices (subscripts and superscripts) take on the values of |
and 2. Lastly, summation is implied whenever a subscript and superscript have the same
index in an expression.
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3.2. Kinematics

The analysis which follows is along the lines presented by Reddy (1984) for composite
plates. For the coordinate system shown in Fig. 2 and discussed above, the coefficients of
the strain tensor at any point in the shell are (Naghdi. 1963)

e = YU — bipils) + L. s~ bain) (11)
€yy = g(.u';ﬁyj'*_ﬁ).z +b;ﬁ,) (l:)
€33 =, (13

where || denotes covariant differentiation with respect to base vectors {a,.a,,a,}, i, are the
coefficients of the displacement vector components tangential to the surface at point B.
These components, called intrinsic components. are in the plane tangent to the surface at
point B {Fig. 3). i; is the coefficient of the “out-of-plane”™ or normal component of the
displacement vector at point B, called the extrinsic component of the displacement, and is
normal to the plane tangent to the surface at point B.

The coeflicients of the tangential or intrinsic components of the displacement vector
are assumed to vary with position through the thickness according to the expression

i, =, +f+ 0, +2%Y, (149

The coeflicient of the normal or extrinsic component of the displiacement vector is assumed
to be constant through the thickness

Iy =w. (15)

vy, e g, and ¢, are as yet undetermined displacement measures. These measures are
functions of position r and time «.

The expression for the tangeatial displacement cocfficients @, can be simplified by
making use of the fact that the transverse shear stresses are zero on the load-free upper and
lower surfaces of the shell (Reddy, 1984)

chy=0,=0 al =+ _. (16)

For shells constructed of isotropic or orthotropic layers, when the transverse shear

stresses are zero on the outer surfices, the transverse shear strains are also zero on these
surfaces (Reddy, 1984)

. 17

[ B -1

(.’1‘\:(,'2]:0 at :=‘_t

By substituting eqns (14) and (15) into eqn (12) and making use of eqn (17), we obtain

4 o :
Vo= = g =g e+ B b b, 18)
"
?= bigr,. (19)

For a plate the curvature coefficients #! arc zero and hence eqns (18) and (19)
reduce to

b= = g Bt <0

¢, =0. n
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Table {. Definitions of the strain measures

}‘xﬂ = l.xﬂﬂ—bxun‘ .va‘ = ﬂl“rn..:d“h;v,‘
PE
Kag = Bag Ky = — ;’h‘.w

) h*

h:
fap = I(/’QI// )y - 3(15,° l,bib;)«//,

B = Wy 0, = =2by.

Equations (20) and (21) are the same as those derived by Reddy (1984) for a plate.
By substituting eqn (19) into eqn {14) we obtain

N
i, =t,+zf,+:° —14— by, +2 Y, (22)

where i, are given by eqn (18).

In the following analysis, we will use eqn (22) to represent the coefficients of the
tangential or intrinsic components of the displacement. This is in contrast to the often used
method. where only a lincar variation through the thickness is used to describe &, (Naghdi,
[984)

u, =v,+zf5,. 23)

In our discussions we will refer to results obtained from eqn (22) as being of the
“higher-order™ theory and to results obtained from eqn (23) as being of the “standard™
theory.

The cocethicients of the strain tensor can now be expressed in terms of the unknown
displacement measures o, w, i, and ,. By substituting cgns (15) and (22) into eqns
(11) (13) we obtain

t‘x}! = gllg(.l)','/l + :K",-/I +::;';'/l + :‘()‘,'/l) + %l[}‘l(}","‘ +:K",'1 +:2;'*,-x + :}U'/:) (24)
Coy = .1?(}'1\+:l‘:x}+:2;'x,\+:‘0z¥) (25)
e =0 (26)

where the tensor coceflicients expressed in terms of the Greek letters represent the strain
measures defined in Table 1. The four strain measures in the left-hand column correspond
to the tangental or “in-plane™ strains. The four strain measures in the right-hand column
correspond to the transverse shear strains.

Three of the strain measures in Table | (7,4, K4, and y,3) are the same as those that
would be obtained using eqn (23) (“‘standard™ theory (Naghdi, 1984)). The remaining five
strain measures (A, U, K550 4,3, and 0,3) are due to the quadratic and cubic terms in egn
(22). Finally. for a plate in which the curvature coefficients #% are zero, the equations in
Table | reduce to the expression obtained by Reddy for a plate (Reddy, 1984).

3.3. Constitutive relutions
The shell is made of isotropic or orthotropic layers (called plics or laminac). The
propertics of cach layer are taken to be symmetric about the layer’s midsurface (monoclinic
material). The constitutive rclations applicable to cach layer are (Naghdi, 1963)
o_x/f - Cx/l;uicyd + C:[”)c” (27)
ot = 2C" e, (28)

7

(T“‘ = C}JTJ(’.’.@‘*‘C””(’U (29)
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Table 2, Definitions of the stress resultants

&2

h 2 [
N = J #o.rr de_ Q:S =j’ yo_l.‘d:

w2
ua §Tid R”=J‘ uo*'zds

Vo

“h2
a2
J o pfz d: 5 J. uo*izid:
w2

a2
;m' Wt ds ™ j potizds
w2

w is defined by eqn (36).

where 0%, 6%, and ¢ denote the coefficients of the stress tensor at any point, and C*7,
C MY and CYY are the coefficients of the elastic stiffness tensor (moduli
tensor).

As stated previously, the transverse normal coefficient of stress ¢’ is assumed to be
negligible. Accordingly, eqns (27)-(29) become

o = QWi ot =20 e, (30)
where Q¥ and Q¥ arc the coeflicients of the reduced stiffness tensor, defined as

PR PR R ]
Q-x[i;-a’ - Cw;}«,-;i - '(' C ) Qz}y] = (* ¥y 5. (3 | )

(VH}‘

For orthotropic materials, the physical cocllicients of the reduced stiffness tensor, in terms
of the engincering constants, are given in Bicos (1987).

The aforementioned equations apply to a single ply or layer. For a laminate composed
of several fayers, the stress-strain relations can conveniently be expressed in terms of the
stress resultants defined in Table 2

By combining the aforementioned equations we obtain the constitutive relations for
the laminate given in Table 3. For a plate, where the curvatures are zero, (B, | B,

Table 3. Laminate constitutive relations

#

N = (B0 B B 4,8,
M7= By (e BIPK  + BY L+ B0,
L= B+ BEOK  B - B
P o= By b B b B+ B
Q7 = BT B, B+ BT,
R = (B 04 By + B+ B,
ST = B BT B+ BT,
T = B BV B+ B,

Bt = J G W pdz, n=0,1.....6

L3N
,Ii‘-"‘=f O - i uz"dz, n=0.1.....6
e d

and ¢ and §** arc the coefficients of the reduced stiffness tensor
with respect to the midsurface and (') is the inverse of 4.
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Fig. 4. Hlustration of an edge element and edge traction.

and B become the in-plane, in-plane/bending coupling, and bending stiffness tensors,
respectively. These tensors are identical to the A7, B and D tensors used in
conventional laminate plate theory {Tsai and Hahn, 1980 ; Jones, {975).

In Tables 2 and 3, M. M, and Q' are the tangential or membrane stress resultants,
moment resultants, and transverse shear stress resultants, respectively. These three result-
ants are wdentical to those of the “standard™ theory, in which the tangential coeflicients of
the displacement #, are assumied to vary lincarly through the thickness {eqn (23)). The
additional resultant teasors given in Table 2 do not appear in the “standard™ theory ; they
arise here due to the higher-order terms in our approximation for 4, (eqn (22)).

3.4. Equations of motion

The equations of motion are derived using the extended Hamilton'’s principle
{Meirovitch, 1967). For the shell under consideration, the extended Hamilton's principle
takes the form of

«)'J ‘ [J'Jj (r-Uyd i”-}-Jj (* vt +0* Vvyiy) dxla] dt =0 (32)
3 v 1,

where 8 is the variation symbol, and ¢, and 7, arc two instants of time. T is the kinetic
energy density

T = Lp@ti, + i) (33)

where p is the material density and dots indicate diflferentiation with respect to time. U is
the strain energy density

U= Q%0 +20"e,re,y 34
¥ is the volume of the shell and dV is a volume element
dV = p dz dA, (35)
where 1 is the determinant of ¢ given by
u=1=2=H+zK (36)

H is the mean curvature and K the Gaussian curvature of the midsurface

[N 1 l
. — — - e}t - . 37
H 2(R,+R:>‘ K RR, 37
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dA, is a midsurface area element. A4, is the edge area on which the applied stresses are
specified. and dA, is an element along this edge (Fig. 4)

Vﬂ dA,, = ""5# d: d(‘l, (38)

where dc, is the corresponding midsurface edge line element, v, the components of the unit
normal vector at a point off the midsurface, and v; the components of this unit normal
vector with respect to the midsurface. o*** and o** are the stress components corresponding
to the specified edge tractions.

By combining eqns (15)-(38) together with those in Tables 1-3. after very lengthy but
straightforward calculations (Bicos. 1987), we obtain the equations that describe the motion
of the shell. The resulting equations are listed in Table 4 for orthogonal lines-of-curvature
coordinates (Fig. 2). The first four equations apply at every point in the midsurface. The
boundary conditions apply to points along the edge of the midsurface.

The displicement measures ¢, and the stress resultant tensors L*, P* R*, §**, and
T*! appearing in the equations of motion are the result of the higher-order approximation
employed here. i.e. they result from the quadratic and cubic terms included in the expression
for the displacement 4, (eqn (22)). By setting i, equal to zero in eqn (22). the equations of
motion become identical to those that would be obtained if the “standard™ approximation
for a, (eqn (23)) were used,

The boundary conditions in Table 4 express the conditions that must be satisfied along
the cdge of the shell. These relations show that along an edge the following conditions must
be specified

Table 4. Equations of motion and boundiry conditions

Orthogonal lines-of-curvature coordimate system (Fig. 2).

Fyuations of motion

W .
- [1..1*‘, +10 + (/1 '4 b+ /..5-;):2:,,]“'” + N~ =0

L b N E QL =0

. IS .
- [l,i‘, w0+ (f‘ e /45;),1,,,]“"‘ +MP—Q" =0

on 'S .
- K:: ; W+ I‘u”’):"‘ + (1‘ : bra™ + amf*) 3

l" Y T b: o B e h_‘ /i Y B2
+ ’416”3”"“ +I\4(b;u +Ha )+ " |y, +»_«‘»}>‘,L;I,+P“

.

,: 2
- : hl”Rl‘ __3(‘)'/:_ :”h}h{i)snl _2”’17-:5 = ().

Boundury conditions

v N = N of dry =0
and

v ME = e AP or 8B, =0
and

v, = v, Q' ofr dw=0
and

[/ 2 ,2
v(fJ ML I"") = v,(}.b','u’w P*"’) or Sy =0
where v, are the components of the edge unit normal, and

%
I, =f ppz"dz, n=0.1,....6.

-
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Fig. 5. {Hustration of the terms used in the definition of the damping factor,

y cither the membrane stress resultants or the membrane displacements, and
} cither the moment resultants or the rotations, and

} vither the transverse shear stress resultants or the normal displacement, and

) cither the higher-order resultants or the higher-order displacement mcasures;
these resultants (L and £ and the displacement measures , have no ready physical
interpretation.

{1
2
{3
(4

Solutions to the equations in Table 4 can be obtained by numerical methods. These
solutions provide the displacements at every point on the midsurface. Once the dis-
placements of the midsurface are known, the displacements at any point in the shelf ean be
determined by eqns (15) and (22), The numerical methad used for obtaining solutions to
the free vibration problem s discussed in Section 4,

3.5, Damping
The dumping associated with a given mode of vibration of the shell is characterized
by a modal damping factor 4 (also called the loss factor) defined as (Lazan, 1968)

A bf’"i‘l\

= . 39
EKURLI‘ ( )

H

Here 7 ts o measure of the strain energy dissipated per radian of vibration in the mode of
interest, {™* the total strain energy of the entire laminate at maximum displacement during
one cycle of vibration in the mode of interest, and AU™ the strain energy dissipated in
that mode of vibration during the sume cycle (Fig. 5). Procecding in a manner similar to
Lin ¢ al. (1984), for a laminate consisting of NV plics. we can write
N
Uvn.n - Z L;:’n.ﬂ (40)
=1
where U™ is the strain energy of the sth ply at the maximum displacement during one
cycle of vibration in the mode of interest. Similarly, the strain cnergy dissipated by the
laminate during the same ¢ycle of vibration in the mode of interest is
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N
AU™ = Y AU (40

LR}

where AUT* is the strain energy dissipated by the ath ply during this cycle of vibration in
the mode of interest. With reference to eqn (34), the strain energy for an orthotropic ply.
in terms of the ply coordinates. is

U, { U, dv,
;

v

i

J (10 ei+ 10,6l + 000, +20,.05. +20 el +20el,), dV, 42)

where Q... O, Que Qo Q.o and @, are the components of the reduced stiffness matrix
(Jones, 1975). e,. ¢,. €. €., and e, the strain components (physical coefficients of the
strain tensor). and ¥, the ply volume. The coordinates x and y are in the directions paraliel
and transverse to thc fibers in the plane of the ply, and - is in the direction normal to the
plane of the ply. The subscript ss represents shear. From eqn (42), the maximum strain
energy during one cycle of vibration can be written as

[
Urs = (U, 4+ U, + Uy + U+ Us+ UDR™ = 3 (U™ (43)

i}

The loss of strain energy of the ath orthotropic ply ts written as (see cqn (43))

AUT™ = (AU, + AU, + AU+ AU+ AU+ AU = Z QAauv). (44)

d ]

Fach of the six terms in eqn (44) represents the change in the strain energy associated with
U, through U/, during one cycle.

Analogous to eqn (39), for the nth ply a damping factor is now defined for each of the
sIX strain energy terms

AU;“%IX .
(), = (5;&“’“*)’ i=12..,6 (45)

U™ iy the strain energy at maximum displacement and AUT the corresponding strain
energy dissipated during the ensuing one cycle of vibration.

By combining eqns (39)~(45) we obtain for cach vibration mode of interest the modal
damping factor for the laminate

Z }: (n U™

n=" ‘—l~:--——--' - (46)

Z Z (U

nei =i

For cach mode of vibration, the strains needed to calculate the strain energics are
given by the free vibration solution of the equations of motion described in the previous
subscction. The damping factors 7, must be measured experimentally,

4. METHOD OF SOLUTION

A finite element procedure was developed to obtain solutions to the equations described
in the previous section. In the finite element formulation 4-node bilinear quadrilateral
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elements were used. For these elements we may use seven degrees of freedom per node
corresponding to the seven displucement measures (¢, 2. f,. B ¢y, and ¢» ineqn (22
and w in eqn (16)). or we may use five degrees of freedom per node corresponding to the
tfive displacement measures (¢, -, f. and f, tn eqn (23) and w in eqn (16)).

We developed an algorithm for obtaining numerical results for problems involving
plates. cylindrical shells. and cylindrical panels. with or without circular cutouts. In this
algorithm the entries in the element stiffness and mass matrices are evaluated by Gaussian
integration schemes (Hughes. 1987). Two such schemes were built into the algorithm : the
four-point (2 x 2) Gaussian integration scheme, and the one-point Gaussian integration
scheme. To minimize errors in plates (caused by shear locking), the entries in the element
stitfness matrix assoctated with transverse shear stiffnesses were evaluated using the one-
point Gaussian integration scheme. To minimize errors in the shells (caused by shear and
membrane locking). the entries in the element stiffness matrix associated with transverse
shear and membrane stitfnesses were evaluated using the one-point integration scheme
(selective reduced integration (SR1) or B-method (Hughes, 1987). For turther details of the
finite element formulation the reader is referred to Bicos (1987).

We developed a computer code (designated as “VIBRS™) to implement the algorithm
described above. This code can be used to caleulate the natural frequencies, mode shapes,
and damping factors of composite plates, cylinders, and cylindrical pancls with and without
circular cutouts. The code wis written in Fortran-77. and may be obtained from the authors.
A user-friendly ™ input interface allows the complete input data file to be gencrated in a
few (3 10) minutes. Depending on the size of the problem (i.c. the number of elements used
and the number of modes required on a VAX 11/780) the CPU time ranges from a fow
minutes forsmall problem (10 clements, S modes) to | h for a farge problemt (400 clements,
15 modes).

5. VERIFICATION OF THE MODEL

The model, the algorithm, and the computer code developed during the course of this
study must be verified. This verification was cffected by comparing the results of the
present method to existing analytical, numerical, and experimental results pertaining to free
vibration of 1sotropic or composite plates and cylindrical shells with or without cutouts.
The problems included in our verification studies were grouped into three major categories

(1) isotropic material: free undamped vibration
(2) composite material : free undamped vibration ;
(3) composite material: free dumped vibration.

Problems related to the free undumped vibration of isotropic and composite materials
are examined below. The free damped vibration of composite plates and shells will be
discussed in a forthcoming paper (Bicos and Springer, 1989). The results presented were
computed with five degrees of freedom per mode. using the material propertics in Table S.
Materials T and 2 given in this table are fictitious orthotropic materials. Following the
accepted custom, in the frequency vs mode number plots, the natural frequencics caleulated
at discrete modes are connected by continuous lines.

5.1. Isotropic material @ free undamped vibration

The frec undamped vibration of isotropic plates and shells containing no cutouts has
been widely investigated (Leissa, 1969, 1973). Here we chose three problems against which
to compure our results, namely, the free undamped vibration of a plate, a cylinder, and a
cylindrical pancl.

The first problem examined was an aluminum plate with free edges (Fig. 6). The first
four natural frequencices caleulated by the present method are compared with the results of
the classical thin plate theory (Iguchi, 1953). There is excellent agreement between the
numerical results of the present method and the analytical results of the classical plate
theory.



Table 5. Material properties used in the calculations

Material Material HT-S/DX210 AVCO 5505 E-glass-

Property Symbol Units Aluminum Steel “Aragonite” l 2 graphite-epoxy  boron-epoxy epoxy
Longitudinal modulus E, msit 9.9 26 21 10 10 16.3 30 2.08
Transverse modulus E, msi 1t 04 0.25 .14 27 0.74
Longitudinal shear modulus C., msi 6.1 02 0.15 0.649 0.65 0.27
Transverse shear modulus G, msi 37 0.2 0.15 0.649 0.65 0.27
Transverse shear modulus G,. msi 6.2 0.08 0.125 0.438 1.05 0.10
Longitudinal Poisson’s ratio v, — 03 0.3 0.44 0.25 0.25 03 0.28 0.35
Density P 10" 'Ibstin. ! 0.254 0.729 1000 10000 10000 0.143 0.193 0.129

T 10° Ibjin’.
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Fig. 6. Natural frequencics of a free square aluminum plate. Comparison of the results of the present
method with the classical plate theory solution of [guchi (1953).

The second problem studied was an aluminum cylinder clamped at one end (Fig. 7).

We compared the natural frequencies caleulated by our method with the analytical results

of Resnick and Dugundjt (1966). The frequencies caleulated by the two methods are within
Yo of cach other.

The third problem considered was a steel eylindrical punel with the straight edges free
and with the curved edges simply supported (Fig. 8). The natural frequencies caleulated by
the present method agree with the experimental data of Heki, as quoted by Letssa (1973).

Justas for the problem of plates and shells containing no cutouts, there iy a considerable
amount of information on the free undamped vibration of isotropic plates and shells
containing cutouts (Leissa, 1969, 1973). In many of the previous reports either the results
were not given in suflicient detail to be useful in comparisons, or the cutouts were
rectangular (Brogan e ¢l 19695 Aksu and Al, 1976 Ali and Atwal, 1980 Joga-Rao
and Pickett, 1961). We Tound two previous results that could readily be compared with
our method. These were the data of Tukahashi (1938) and Todu and Komatsu (1977).

Takahasht measured the fundamental frequencies of aluminum plates containing
circular cutouts varying in diameter from 0 to 3.6 in. (Fig. 9). Compurisons between the

) : !
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g b
& 77
= 100 ALUMINUM
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< R = 291in
z b = 0.00698S in
¢ v ¥ T — ™
° 2 4 s s 10 12

NUMBER OF CIRCUMFERENTIAL WAVES

Fig. 7. Natural frequencies of an aluminum cylinder climped along one edge and free along the
other edge. Comparison of the results of the present method with the analytical results of Resnick
and Dugundji (1966).
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Fig. 8. Natural frequencies of a steel cylindrical pancl free (F) along the straight edges and simply
supported (88) along the curved edges. Comparison of the present method for undamped vibration
with the data of Heki {Leissa, 1973).

present method and Takahashi's data show good agreement, especially at smaller cutout
sizes (R/a < 0.1). Even at lurger cutout sizes the model agrees with the data within 4%.

Toda and Komatsu measured the natural frequencics of aluminum cylinders clamped
along one edge. Bach cylinder contained two circular cutouts located at mid-length on
opposite sides of the eylinder (Fig. 10). The data of Toda and Komatsu are compared with
the results of the present method in Fig. 10. The numerical results of the present method
agree with the data extremely well Tor the first four modes. The agreement is slightly less
for mode 5, but the numerical results are still within about 6% of the data.

5.2. Composite materiul : free undumped vibration
The problem of free undamped vibration of composite plates and shells has been
studied widely, mostly by analytical means. For solid plates (i.e. no cutouts) we compared
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Fig. 9. Fundamental frequency as a function of cutout size of a rectangular aluminum plate with
its edges clamped. Comparison of the present method for undamped vibration with the data of
Takahashi (1958).
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Fig. 0. Natural frequencies as a function of cutout size of an aluminum cylinder clamped along
one edge and free along the other edge. There are two cutouts on opposite sides of the eylinder.
Comparison of the present method for undamped vibration with the data of Toda and Komatsu
(1977).

results of our model with the results of the thin plate theory of Reddy (1984) and Phan and
Reddy (1985), with the results of the three-dimensional theory of clasticity as presented by
Noor (1972) and by Srinivas and Rao (1970), and with the analytical results and data of
Cawley and Adams (1978). For plates with cutouts we compared our results with those of
Prabhuakaran and Rajamani (1978). For cylinders we compared the results of our model
with the numerical results of Shetnman and Grief (1984).

First, we examined two [0/90], orthotropic composite plates with their edges simply
supported (Figs 11 and 12). The fundamental frequencies of these plates were caleulated
as a function of the modulus ratio (£,/F,) by the present method, and were compared with

(1) the results of the classical thin plate theory (Phan and Reddy, 1985) :
(2) the numerical results of Phan and Reddy (1985);
(3) the three-dimensional theory of elasticity given by Noor (1972).

The fundamental frequencies given by the classical plate theory are evidently in error (Fig.
11). The fundamental frequencies calculated by the present method, by the numerical
procedure of Phan and Reddy, and by the three-dimensional elasticity results of Noor agree
very closely over a wide range of the modulus ratio (Fig. 12),

Note that the results of Phan and Reddy were based on a “higher-order™ theory using
seven degrees of freedom per node. The present results computed using only five degrees
of freedom per node (Ustandard™ theory) agree very closely with the seven degrees of
frecedom “higher-order™ theory of Phan and Reddy.

Sccond, we considered a square [0/45/-45/90], orthotropic composite plate with its
edges clamped (Fig. 13). and calculated the fundamental frequencies as a function of the
plate’s length to thickness ratio. The fundumental frequencics obtained by the present
method were compared with the numerical results of Phan and Reddy (1985). 1t is note-
worthy that the “standard™ theory (five degrees of freedom per node) results agree very
closely with the results of the “higher-order™ theory (seven degrees of freedom per node).
especially when the plate is “thin™ (say L/h > 40). This is expected since one of the
assumptions in our analysis is that the thickness /ris small compared to the other dimensions.
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FUNDAMENTAL FREQUENCY, f, (i)

Fig. 11. Fundamental frequency of a simply supported square composite plate made of orthotropic
layers. Comparison of the results of the present method with the three-dimensional elasticity results
of Noor (1972) and the classical plate theory results of Phan and Reddy (1985). Material propertics
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We studicd a single layer orthotropic aragonite plate with its edges simply supported
(Fig. 14). The natural frequencies calculated by the present method were compared with
the natural frequencies given by the three-dimensional theory of elasticity solution presented
by Srinivas and Rao (1970) and by the classical plate theory solution of Phan and Reddy
(1985). The natural frequencies obtained by the present method again agree well with the

FUNDAMENTAL FREQUENCY, f, (Hz)

Fig. 12. Fundamental frequency of a simply supported square composite plate. Results were
calculatc@ by the present model using five degrees of freedom per node. Comparison of the present
results with the numerical results of Phan and Reddy (1985) and the analytical results of Noor
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Fig. 13, Fundamental frequency of a square composite plate having its edges clamped. Comparison

of the results of the present method, using the “standard™ theory (five degrees of freedom per node),

with the results of the “higher-order™ theory (seven degrees of freedom per node) of Phan and
Reddy (1985). Material properties given in Table §.

results of the three-dimensional clasticity approach but are in disagreement with the results
of the classical plate theory.

Two additional composite square plates were analyzed, with [(45/-45).], and
[0/60:30/90], layups. The natural frequencies of these plates caleulated by the present
method were compared with the analytical results and data of Cawley and Adams (1978).
There is excellent agreement between the results of the present method and the data of
Cawley and Adams (Fig. 15).

A win —{ __{’ ta
10in 3
100 -
_ ARAGONTTE
= EDGES SIMPLY SUPPORTED
T
s CLASSICAL PLATE THEORY
z .NO ROTARY INERTIA
§ (REDDY)
&
3
)
é 100
>
g CLASSICAL PLATE THEORY
z (REDDY)
PRESENT
(SRINTVAS & RAO)
0 T Y 1 T 1 T
0 2 4 6

MODE NUMBER

Fig. 14, Nutural frequencies of a square aragonite plate with simply supported cdgc_s‘.Comparison
of the results of the present method with the three-dimensional elasticity results of Srinivas and Rao
{1970) and the classical plate theory results of Reddy (1984). Material propertics given in Table 5.
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Fig. 1S, Natural frequencies of graphite-cpoxy plates with free edges. Comparison of the results of
the present method for undamped vibration with the analysis and data of Cawley and Adams
(1978). Material propertics given in Table 5.
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Free undamped vibration of plates with cutouts has been investigated by Lee ef al.
(1987) and by Prabhakaran and Rajamani (1978). The analysis of Lee ef af. (1987) applics
to plates with rectangular cutouts, hence their results could not be compared with ours.
Prabhakaran and Rajamani calculated the natural frequencies of clumped unidirectional
composite plates containing a circular cutout. We compared the results of the present

NATURAL FREQUENCY, f(Hz)

Fig. 16. Natural frequencies as a function of cutout size of a unidirectional E-glass-epoxy plate with
its edges clamped. Comparison of the results of the present method with the analytical results of
Prabhakaran and Rajamani (1978). Material properties given in Table 5.
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(8S). Comparison of the results of the present method with the numerical results of Sheinman and
Gretf (1984). Material properties given in Table S.

method with those given by Prabhakaran and Rajamani for a 9 in. square, 0.094 in. thick
clamped plate made of undirectional E-glass-cpoxy (Fig. 16). The natural frequencies
calculated by the present method agree well with those of Prabhakaran and Rajamani.

In addition to composite plates, we also applied the model to the problem of free
undamped vibration of a composite cylinder made of three boron-cpoxy plies, arranged as
cither [04] or [90,0,90]. The edges of the cylinder were either clamped (CC) or simply
supported (SS). The fundamental frequencies caleulated by the present method and by
Sheinman and Grief (1984), are within 1% (Fig. 17).

6. CONCLUDING REMARKS

The cquations presented in this paper describe the free damped vibrational charac-
teristics of laminated fiber-reinforeed composite plates and shells. The “VIBRS™ computer
code applies to rectangular plates, cylinders, and cylindrical panels, which may contain one
or two symmetrically located cireular cutouts. However, by using the equations developed
in this study, the code could readily be extended to other shell geometries.

We note that the computer code can be used to analyze both the free damped and
undamped vibration of flat and cylindrical panels made of fiber-reinforced organic matrix
composites. The code should not be applied to the free damped vibration of such panels
made of an isotropic material because the assumption used in the analysis, that dumping
is independent of frequency, generally is invalid for isotropic materials. Since this assump-
tion does not affect the results for free undamped vibration, the code may also be used to
study the free undamped vibration of rectangular plates, cylinders, and cylindrical panels
made of an isotropic material or alternating layers ol isotropic and composite materials.
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